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1. INTRODUCTION

A lot of articles have shown that approximation methods using various
kinds of smoothness of Banach spaces to establish smooth variational
principles and to resolve problems concerning Banach space theory are
very powerful (see, for instance, [2, 6, 7, 9, 13, 17, 18]). The authors in
these papers mainly applied norms or bump functions (i.e., continuous
functions defined whole spaces with nonempty bounded supports) with
some kinds of smoothness to construct suitable procedures in approxima-
tion for obtaining desired results. People also often consider approximation
of convex functions and its applications, such as ‘‘approximating a lower
semicontinuous proper convex funtion by its inf-convolution sequence,’’
‘‘approximating to a norm by a smooth norm sequence,’’ and ‘‘approxi-
mating to a continuous convex function by smooth convex functions,’’ etc.
(see, for instance, [4; 7, p.90, Problem II. 5; 10–12; 19]). This paper focuses
on the question of w*-lower semicontinuous convex functions approxi-
mated by generically Fréchet differentiable convex functions on dual spaces
and mainly shows the following result.

Theorem. Suppose that E is a Banach space admitting an equivalent
locally uniformly convex norm (in particular, a separable space). Then for



every extended-real-valued w*-lower semicontinuous proper convex function f
on E*, there exists a sequence of w*-lower semicontinuous convex functions
{fn} on E* such that

(i) For each integer n \ 1, fn is Lipschitzian and generically Fréchet
differentiable;

(ii) {fn} is monotone non-decreasing and dominated by f, that is,

fn(x*) [ fn+1(x*) [ f(x*), for all n \ 1 and x* ¥ E*;

(iii) limnQ.fn(x*)=f(x*) for all x* ¥ E*.
If, in addition, f is bounded on each bounded subset of E*, then

(iv) fn Q f uniformly on each bounded subset of E*.

A convex function on a Banach space E is called generically Fréchet dif-
ferentiable if it is Fréchet differentiable at each point of a dense Gd subset
of E [9]. The space E is said to be an Asplund space provided every con-
tinuous convex function on E is generically Fréchet differentiable [15] (see
also [16]); and the dual E* of E is said to be a w*-Asplund space if every
w*-lower semicontinuous and norm continuous convex function on E* is
generically Fréchet differentiable [5] (see also [1]).

We should remark that Collier [5] showed E* is a w*-Asplund space if
and only if the predual E has the Radon–Nikodým property (RNP). The
main theorem presented in this paper further explains that though a locally
uniformly convexifiable Banach space E would not have the RNP, it is
very ‘‘near’’ to having the RNP. This paper consists of five sections. The
second section lists some definitions and properties which will be used in
the sequel; the third section presents some versions for approximants to
Minkowski functionals; the fourth section shows the main theorem in
uniform approximation sense; and the last section gives some remarks on
pointwise approximation and on differentiability of convex functions.

2. PRELIMINARIES

We will always assume that (E, || · ||) is a real Banach space and (E, || · ||)*
its dual, we also simply denote them by E and E*, resp., if no confusion is
caused. By B| · | we mean the closed unit ball of (E, | · |) for an equivalent
norm | · | on E, and by B the closed unit ball determinated by the original
norm || · || on E. For a set A in E, Ā and Āw

g
stand for the norm and the

w*-closure of A, resp.; if E is not a dual space, then Āw
g

denotes the
w*-closure of the canonical embedding of A in the bidual E**.
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Convex Functions, Conjugates, and Subdifferential Mappings

An extended real-valued convex function f on E is said to be proper if it
is nowhere −. valued and its effective domain dom f — {x ¥ E : f(x) <.}
]”. We denote the epigraph of the function f by epi f — {(x, r) ¥ E×R :
f(x) [ r}. The conjugate f* of f on E* and the biconjugate f** on E are
defined by

f*(x*)=sup{Ox*, xP−f(x) : x ¥ E}, x* ¥ E*

and

f**(x)=sup{Ox*, xP−f*(x*) : x* ¥ E*}, x ¥ E,

respectively. Clearly, f* is always w*-lower semicontiuous on E*. The
subdifferential mapping “f of f on E is defined by

“f(x)={x* ¥ E* : f(y)−f(x) \ Ox*, y−xP for all y ¥ E}, x ¥ E.

We can easily observe

“f(x)={x* ¥ E* : f(x)+f*(x*)=Ox*, xP}.

Proposition 2.1. Suppose that f is a continuous convex function on a
nonempty open convex set D of E. Then the subdifferential mapping “f is
locally bounded and norm-to-w* upper semicontinuous at every point of D.

Proposition 2.2 [4]. Suppose that f is a lower semicontinuous proper
convex function on E. Then “f(E) (the image of the subdifferential mapping
“f) is dense in dom f*.

Convex Sets, Support Functions, and Minkowski Functionals

For a nonempty subset A … E(E*), sA stands for the support function of
A. Clearly, sA=sco A (sco wg(A)) is always an extended-real-valued w*-lower
semicontinuous (lower semicontinuous) proper sublinear on E*(E). Con-
versely, for each w*-lower semicontinuous (lower semicontinuous) proper
sublinear functional p on E*(E), there exists a unique closed (w*-closed)
convex set C in E(E*) such that p=sC.

An extended-real-valued function p on E is said to be a Minkowski
functional if there exists a convex set C with 0 ¥ C such that p(x)=
inf{l \ 0 : x ¥ lC}, x ¥ E; In this case, we say p is generated by C. p is
lower semicontinuous (continuous) if and only if C is closed (0 ¥ int C,
resp.); and we have C={x ¥ E : p(x) [ 1}. For such a convex set C, C* —
{x* ¥ E* : Ox*, xP [ 1, -x ¥ C} is termed the polar of C.
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Proposition 2.3. Suppose that p is a lower semicontinuous Minkowski
functional generated by C. Then

(i) p(x)=sCg(x) for all x ¥ E;
(ii) “p(E)=“p(0)=C* (thus, x* ¥ “p(x)Z x* ¥ C* with Ox*, xP=

p(x));
(iii) Cg* — C̄w

g
=“sC(E*)=“sC(0).

(w*-) Slices and (w*-) Strongly Exposed Points of Convex Sets

For a nonempty bounded subset A of E(E*), x* ¥ E*0{h} (x ¥ E0{h}),
a > 0, we say

S(A, x*, a) — {x ¥ A : Ox*, xP > sA(x*)−a}

(S(A, x, a) — {x* ¥ A : Ox*, xP > sA(x)−a})

a slice (w*-slice) of A.
Assume that C … E(E*) is a bounded closed (w*-closed) convex set. A

point x ¥ C(x* ¥ C) is said to be a strongly (w*-strongly) exposed point of
C if there exists a functional x* ¥ E*(x ¥ E) such that {S(C, x*, a)}a > 0
({S(C, x, a)}a > 0) forms a local base of the point x(x*) of C; this means
that for every sequence {xn}({x

g
n}) in C, Ox*, xnPQ sC(x*) (Ox

g
n , xPQ

sC(x)) implies xn Q x (xg
n Q x*); In this case, we call the functional x*(x)

is a strongly (w*-strongly) exposing functional of C and strongly
(w*-strongly) exposing C at x(x*), or we simply say x*(x) is a strongly
(w*-strongly) exposing functional of x(x*).

Proposition 2.4. Suppose that C is a bounded closed set in E and
C** — C̄w

g
. If x ¥ C is a strongly exposed point of C and strongly exposed by

x* ¥ E*, then x is a w*-strongly exposed point of C** and w*-strongly
exposed by the same functional x*.

Proof. By hypothesis, {S(C, x*, a)}a > 0 forms a local base of x ¥ C.
Note S(C, x*, a) … S(Cgg, x*, a) … S̄w

g
(C, x*, a) for every a > 0, and

limaQ 0 diam S(C, x*, a)=0. w*-lower semicontinuity of the bidual norm
on Egg implies that

diam S(Cgg, x*, a)=diam S(C, x*, a)Q 0 (as aQ 0+)

Fréchet Differentiability of Convex Functions

A real-valued convex function f on a nonempty open convex subset D of
E is said to be Fréchet differentiable at x if there exists a (unique) x* ¥ E*
such that for every E > 0, there is d > 0,

0 [ f(x+y)−f(x)−Ox*, yP [ E||y||, whenever y ¥ E with ||y|| < d.

APPROXIMATION OF CONVEX FUNCTIONS 129



The function f is said to be generically Fréchet differentiable in D if it is
everywhere Fréchet differentiable in a dense Gd subset of D, or equiva-
lently, f is densely Fréchet differentiable in D since the Fréchet differen-
tiability point set of a continuous convex function is always a Gd-subset.

Proposition 2.5 [16, Proposition 5.11]. Suppose that p is a continuous
Minkowski functional on E with “p(0) — C*. Then p is Fréchet differentiable
at x with the Fréchet derivative x* if and only if x* is a w*-strongly exposed
point of C* and w*-strongly exposed by x.

Proposition 2.6 [3]. Suppose that f is a continuous convex function on
E with f(0)=−1, and suppose that p is the Minkowski function generated
by epi f. Then f is Fréchet differentiale at x with the Fréchet derivative x* if
and only if p is Fréchet differentiable at (x, r) and with the Fréchet derivative
r*(x*, −1) where r=f(x) and r*=f*(x*)−1.

Approximants to a Convex Function by Its Inf-Convolutions

An extended real-valued function f on a nonempty open subset D is said
to be locally Lipschitzian around x ¥ D if there exist an open neighborhood
U of x and a constant L such that |f(x)−f(y)| [ L ||x−y|| whenever
x, y ¥ D; and to be locally Lipschitzian on D if it is locally Lipschitzian
around each point x of D. We denote by LD(f) the smallest constant such
that |f(x)−f(y)| [ LD(f) ||x−y|| whenever x, y ¥ D. The functions with
LD(f) <. are termed Lipschitzian on D; If D=E and LA(f) <. for
each bounded subset A of E, then f is called b-Lipschitzian on E.

For an extended-real-valued proper convex function f on E, and for
n=1, 2, ..., the inf-convolutions fn are defined by fn(x)=inf{f(y)+
n ||x−y|| : y ¥ E}. The following properties are classical (see, for instance,
[20]).

Proposition 2.7. With the functions f and fn as above, then

(i) fn [ fn+1 [ f for each integer n \ 1;
(ii) fn is Lipschitzian with LE(fn) [ n for all sufficiently large n \ 1;

(iii) limnQ. fn(x)=f(x) for all x ¥ E;
(iv) if f is locally Lipschitzian around x ¥ E, then there exist n \ 1 and

a neighborhood U of x such that fn=f in U.
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3. APPROXIMATION VERSIONS FOR
MINKOWSKI FUNCTIONALS

A Minkowski functional p on a Banach space (E, || · ||) is called an
equivalent asymmetric norm (or simply, an a-norm) if there exist a, b > 0
such that

a ||x|| [ p(x) [ b ||x|| for all x ¥ E.

Letting p*=sC, where C={x ¥ E : p(x) [ 1}, then p* is a w*-lower
semicontinuous a-norm on E* with

b−1 ||x*|| [ p*(x*) [ a−1 ||x*|| for all x* ¥ E*,

which is called the dual of the a-norm p.
We denote by (W, d) all continuous Minkowski functionals on E

endowed with the metric d defined for p, q ¥ W by

d(p, q)=sup{|p(x)−q(x)|: x ¥ B}.

Clearly, (W, d) is a complete metric space. Let W0 be the collection of all
a-norms on E. Then we observe that W0 is a dense open subset of (W, d);
therefore (W0, d) is itself a Baire space.

Dually, letting (W*, d*) denote all w*-lower semicontinuous and norm
continuous Minkowski functionals on E* equipped with the metric d*
defined for p*, q* ¥ W* by

d*(p*, q*)=sup{|p*(x*)−q*(x*)|: x* ¥ B*}

and Wg
0 denote the collection of all dual a-norms on E*, then Wg

0 is a dense
open subset of the complete metric space (Wg

0 , d*). Without any difficulty
to show that the mapping F: (W0, d)Q (W

g
0 , d*) defined by

F(p)=p*(the dual of p), p ¥ W0

is a homeomorphism from (W0, d) onto (Wg
0 , d*). An a-norm p on the

space (E, || · ||) is said to be locally uniformly convex, if for any x, xn ¥ E
with p(x)=1=p(xn) for n=1, 2, · · · , p(x+xn)Q 2 implies xn Q x, which
is equivalent to that for any x( ] 0), xn ¥ E, p(x)+p(xn)−p(x+xn)Q
0(nQ.) implies xn Q lx for some l \ 0.

Lemma 3.1. Suppose that p is a locally uniformly convex a-norm and q is
an extended-real-valued lower semicontinuous Minkowski functional on E.
Let r=p+q and r*=sC, where C={x ¥ E : r(x) [ 1}. Then r* is generi-
cally Fréchet differentiable in E*.
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Proof. Noting that C(p) — {x ¥ E : p(x) [ 1} is closed bounded convex
and C … C(p), lower semicontinuity of r implies that C is a closed bounded
convex set with 0 ¥ C. Therefore r* — sC is a w*-lower semicontinuous and
norm continuous Minkowski functional on E*, that is, r* ¥ W*. By the
Bishop–Phelps theorem (see, for instance [16, pp. 51–52]), the set G of all
support functionals of C are dense in E*. It suffices to show that r* is
Fréchet differentiable at each point of G.

Let S={x* ¥ E* : r*(x*) > 0} and K=E*0S. Note S 2 int K is dense in
E*, S is an open set of E* and r*=sC is Fréchet differentiable at each
point of int K. We need only proving that f is Fréchet differentiable at
each point of G 5 S. Given x* ¥ G 5 S, by definition we can assume that
Ox*, xP=sC(x*)=1 for some point x ¥ C. So that x* ¥ C*(the polar of C).

Noting that x ¥ “sC(x*) and noting Proposition 2.3(iii), by Proposition
2.5, it suffices to verify that x ¥ C**( — C̄w

g
=“sC(0)) is a w*-strongly

exposed point of C** and is w*-strongly exposed by x*.
Suppose, to the contrary, that x ¥ Cg* is not w*-strongly exposed by x*.

Then, by Proposition 2.4, x is not a strongly exposed point of C strongly
exposed by x*. Therefore there exist a sequence {xn} in C and E > 0 such
that Ox*, xnPQ sC(x*)=1 and ||x−xn || \ E for all n \ 1. Noting sCg=r
which is less or equal to 1 at each point of C, we have

2 \ r(x)+r(xn) \ r(x+xn)=sCg(x+xn) \ Ox*, x+xnPQ 2.

On the other hand,

r(x+xn) — p(x+xn)+q(x+xn)

[ p(x)+p(xn)+q(x)+q(xn)

=r(x)+r(xn).

Combining with the inequalities above we observe

p(x)+p(xn)−p(x+xn)Q 0

and

q(x)+q(xn)−q(x+xn)Q 0

and locally uniform convexity of p tells us xn Q lx for some l \ 0. This
and Ox*, xnPQ Ox*, xP=1 further say that l=1, and this is a contradic-
tion which completes our proof.

Corollary 3.2. The dual norm of an equivalent locally uniformly
convex norm on a Banach space E is generically Fréchet differentiable in E*.
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Theorem 3.3. Suppose that (E, || · ||) admits an equivalent locally uni-
formly convex norm | · |. Then for every w*-lower semicontinuous and norm
continuous Minkowski functional p* on E* there exists a sequence of
w*-lower semicontinuous and norm continuous Minkowski functionals {pgn}
on E* such that

(i) pgn [ p
g
n+1 [ p* for all integers n \ 1;

(ii) for each n \ 1, pgn is generically Fréchet differentiable;
(iii) pgn Q p* uniformly on each bounded subset of E*.

Proof. Suppose that p* is a w*-lower semicontinuous and norm
continuous Minkowski functional on E*, and | · | is an equivalent locally
uniformly convex norm on E. Let

C*={x* ¥ E* : p*(x*) [ 1}

and

C={x ¥ E : Ox*, xP [ 1 for all x* ¥ C*}.

Then sC=p* and C is bounded since p* is continuous. Boundedness of C
and positive homogeneity allow us to assume C … B| · |. Let p=sCg. Then p
is an extended-real-valued lower semicontinuous proper Minkowski func-
tional on E.

For each n \ 1, let pn=
1
n | · |+p and Cn={x ¥ E : pn(x) [ 1}. Then

Cn … Cn+1 … C and Cn are closed since pn are also lower semicontinuous
Minkowski functionals on E for all n \ 1.

Noting 1
n | · | are equivalent locally uniformly convex norms on E for all

n \ 1, it follows from Lemma 3.1 that sCn — p
g
n [ p

g
n+1 are generically

Fréchet differentiable in E*. Thus (i) and (ii) are proved.
To show (iii). Noting for every n \ 1,

B| · | ‡ C ‡ Cn — {x ¥ E : pn(x) [ 1}

=3x ¥ E : p(x) [ 1−1
n
|x|4

‡ 3x ¥ E : p(x) [ 1−1
n
4

=11−1
n
2 C.

So we have p*=sC \ sCn=p
g
n \ (1−

1
n) p*, and this explains (iii) holds.

APPROXIMATION OF CONVEX FUNCTIONS 133



Theorem 3.4. Suppose that the space E admits an equivalent locally
uniformly convex norm. Then w*-lower semicontinuous and norm continuous
Minkowski functionals contains a dense Gd subset of (W*, d*).

Proof. Since Wg
0 and W0 are dense open subsets of the complete metric

spaces (W*, d*) and (W, d), resp., and since the mapping F: pQ p* is a
homeomorphism from (W0, d) onto (Wg

0 , d*), it suffices to show that locally
uniformly convex a-norms form a dense Gd-subset of (W0, d). It is con-
tained in [7, proof of Theorem 4.1.i, pp. 54–55] but with the one change
—substituting the a-norms for the norms on E.

Corollary 3.5. Suppose that E is a separable space. Then

(i) For every w*-lower semicontinuous and norm continuous
Minkowski functional p* on E* there exists a w*-lower semicontinuous and
norm continuous generically Fréchet differentiable monotone non-decreasing
Minkowski functional sequence {pgn} which uniformly converges to p* on each
bounded subset of E*;

(ii) Generically Fréchet differentiable elements in (W*, d*) contain a
dense Gd-subset of (W*, d*).

Proof. By Theorems 3.3 and 3.4, it is trivial since every separable
Banach space is locally uniformly convexifiable (see, for instance, [7, 8]).

4. UNIFORM APPROXIMANTS TO CONVEX FUNCTIONS

In this section, we deal with continuous convex functions.

Lemma 4.1. Suppose that f is a continuous convex function on a
nonempty open convex set D of E. Then we have

LD(f)=sup{||x*||: x* ¥ “f(D)},

where LD(f) denotes the Lipschitz norm of f on D.

Proof. For any x ¥ D, x* ¥ “f(x), and E > 0, let z ¥ E with ||z||=1 such
that Ox*, zP > ||x*||− E. Openness of D says there is d > 0 such that
x+y ¥ D whenever ||y|| [ d. Thus, by definition

f(x+dz)−f(x) \ Ox*, dzP > d(||x*||− E).

Arbitrariness of x* and E explain that

LD(f) \ sup{||x*||: x* ¥ “f(D)}.
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On the other hand, -x, y ¥ D, we can assume f(y) \ f(x). Therefore

|f(y)−f(x)|=f(y)−f(x) [ Oy*, y−xP [ ||y*|| ||y−x||, -y* ¥ “f(y),

and this implies LD(f) [ sup{||x*||: x* ¥ “f(D)}.

Proposition 4.2. Suppose that f is a continuous convex function on E.
Then f is b-Lipschitzian on E if and only if f is bounded on each bounded
subset of E.

Proof. It suffices to show sufficiency. Suppose that f is not
Lipschitzian on some open convex bounded set D. Then, by Lemma 4.1,
there exist sequences {xn} in D and {xgn} in “f(D) with xg

n ¥ “f(xn) for all
n such that ||xgn ||Q.. Let {zn} in E with ||zn ||=1 for all n such that
Oxg
n , znP > ||x

g
n ||−

1
n . Noting both {xn+zn} and {xn} are bounded sequences,

there existsM> 0 such that

M \ f(xn+zn)−f(xn) \ Oxg
n , znP > ||x

g
n ||−
1
n
Q.,

and this is a contradiction.

Corollary 4.3. Suppose that f and g are continuous convex functions
on E with g [ f. If f is b-Lipschitzian on E, then g is also b-Lipschitzian.

Proof. It suffices to note every continuous convex function is bounded
below on each bounded set and note that b-Lipschitz of f implies g is
bounded above on each bounded set since f \ g.

Lemma 4.4. Suppose that f and g are continuous convex functions on the
Banach space E with f \ g. Then LE(f) \ LE(g).

Proof. By Proposition 2.2, “f(E) and “g(E) are dense in dom f* and
dom g*, resp. Noting dom f* ‡ dom g* whenever f \ g, and it immediately
follows from Lemma 4.1.

Lemma 4.5. Suppose that f and fn (n=1, 2, ...) are Lipschitzian convex
functions on a Banach space E with f(0) < 0 and with fn [ f for all integers
n \ 1, and suppose that p and pn are the Minkowski functionals on E×R
generated by the corresponding epigraphs epi f and epi fn for all n \ 1. If
pn Q p uniformly on the unit ball B of the product space E×R, then
fn Q f uniformly on each bounded set of E.

Proof. Since fn(0) [ f(0) < 0, p and pn(n \ 1) are continuous
Minkowski functionals on E×R. Suppose, to the contrary, that there exist
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a bounded subset A of E and a subsequence of {fn} which is still denoted
by {fn} such that {fn} fails to converge to f uniformly on A. Then there
exist E > 0 and a sequence {xn} … A such that |f(xn)−fn(xn)| \ E for all
n \ 1. Thus f(xn)−fn(xn) \ E for all n since fn [ f. We observe that
(xn, fn(xn)) ¨ epif for all n \ 1, and these say kn — p(xn, fn(xn)) > 1 for all
n \ 1. Note p(x, r)=1 if and only if r=f(x). We have k−1n (xn, fn(xn)) ¥
epi f with f(k−1n xn)=k

−1
n fn(xn).

Since f(xn)−fn(xn) \ E for all n, we see that {kn} fails to converge to 1
and further that p(xn, fn(xn))−p(xn, f(xn))=kn−1 fails to converge to 0.

On the other hand, by the hypothesis and by Lemma 4.4, LE(fn) [
LE(f) <. for all n \ 1. Therefore {fn(xn)} is a bounded sequence and
bounded by LE(f) ·M, whereM=sup{||x||: x ¥ A}, and further {(xn, fn(xn))}
is bounded in E×R. Uniform convergence of {pn} to p implies

kn−1=p(xn, fn(xn))−1=p(xn, fn(xn))−pn(xn, fn(xn))Q 0,

this contradicts that kn−1 fails to converge to 0.

Theorem 4.6. Suppose that E admits an equivalent locally uniformly
convex norm. Then for every w*-lower semicontinuous b-Lipschitzian convex
function f on E* there exists a w*-lower semicontinuous generically Fréchet
differentiable Lipschitzian convex function sequence {fn} with fn [ fn+1 [ f
for all n \ 1 such that fn Q f uniformly on each bounded subset of E.

Proof. Suppose that f is a w*-lower semicontinuous b-Lipschitzian
convex function on E*. Without loss of generality we assume f(0)=−1.
Let p be the Minkowski functional on E*×R generated by epi f. Then p is
w*-lower semicontinuous and norm continuous Minkowski functional since
epi f is w*-closed convex and with the origin (0, 0) ¥ int epi f. Due to
Theorem 3.3, there exist w*-lower semicontinuous and norm continuous
generically Fréchet differentiable Minkowski functionals pn(n=1, 2, ...)
with pn [ pn+1 [ p for all n \ 1 such that pn Q p uniformly on each
bounded subset of E*×R.

Let

Cg
n={(x*, r) ¥ E*×R : pn(x*, r) [ 1}, for all n \ 1.

Then Cg
n is w*-closed convex with Cg

n ‡ C
g
n+1 ‡ C* — epi f for each n \ 1.

We define fn on E by

fn(x*)=inf{r: (x*, r) ¥ C
g
n}, x* ¥ E*.
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This definition is meaningful since Cg
n ‡ C* — epi f, which imply that for

every x* ¥ E* and every n there is at least one r ¥ [−.,.) with r [ f(x*)
such that (x*, r) ¥ Cg

n . All fn are w*-lower semicontinuous and convex on
E* with fn [ fn+1 [ f since Cg

n are w*-closed convex and with Cg
n ‡

Cg
n+1 ‡ C* for all n \ 1.
We claim that fg

n are nowhere −. valued on E* for all sufficiently large
n \ 1.

Noting f(0)=−1, we have p(0, −1)=1. Thus there exists m > 0 such
that 1 \ pn(0, −1) \

1
2 for all n \ m. Suppose, to the contrary, that there

exists x* ¥ E* such that fn(x*)=−. for some n \ m. By definition,
pn(x*, r) [ 1 for all r in R, and further pn(xg/|r|, −1) [ 1/|r| for all r < 0.
Letting rQ −., we see (12 [ ) pn(0, −1)Q 0, this is a contradiction.

We have shown that fn are w*-lower semicontinuous real-valued (hence,
norm continuous), and pn are exactly the Minkowski functionals generated
by fn for all sufficiently large n \ 1. Applying Proposition 2.6 we know
that fn are generically Fréchet differentiable in E*. It follows from Lemma
4.5 that fn Q f uniformly on each bounded subset of E*.

Since f is b-Lipschitzian , fn are also b-Lipschitzian for all sufficiently
large n \ 1 by Corollary 4.3. It remains to show each such fn can be chosen
to be Lipschitzian.

Case (I). f is Lipschitzian. We complete our proof by Lemma 4.4 since
f \ fn for all n.

Case (II). f is b-Lipschitzian. Let Ln(f) denote the Lipschitz norm of
f on Bg

n — {x* ¥ E* : ||x*|| [ n}. By a simple argument of the inf-convolu-
tion sequence {fi n || · ||} of f and n || · || on E* defined for all n \ 1 by

(fi n || · ||) x*=inf{f(y*)+n ||x*−y*|| : y* ¥ E*}, x* ¥ E*,

where || · || denotes the dual norm on E*. We can find a sequence (a sub-
sequence of {fi n || · ||}, to be exact) {gn} of w*-lower semicontinuous
Lipschitzian convex functions on E* such that gn [ gn+1 [ f and gn=f in
Bg
n for all n \ 1.
Let | · | be an equivalent locally uniformly convex norm on E×R, and let
Dg
n — epi gn and D* — epi f. We denote by Dn and D the polars of Dg

n and
D*, respectively, and by qn and q the (extended-real-valued and lower
semicontinuous) Minkowski functionals generated by Dn and D for all
n \ 1, resp.; and we also denote by qgn and q* the Minkowski functionals on
E*×R generated by Dg

n and D*, resp. Then we have for all n \ 1

Dg
n ‡ D

g
n+1 ‡ D*, Dn … Dn+1 … D,

qgn [ q
g
n+1 [ q*, qn \ qn+1 \ q,

qgn=sDn , q*=sD, qn=sD*n ; and q=sDg.
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For all n, k ¥N, let

Dn, k=3z ¥ E×R :
1
k
|z|+qn(z) [ 14 .

Then Dn, k … Dn, k+1 … Dn, and Dn, k … Dn+1, k for all n, k ¥N.
Clearly, D, Dn, and Dn, k are closed convex bounded sets in E×R since
sD=q* is continuous. Let qgn, k=sDn, k . Then by Lemma 3.1, qgn, k are
generically Fréchet differentiable in E*×R for all n, k ¥N. We can easily
check

(i) qgn, k [ q
g
n, k+1 [ q

g
n [ q

g
n+1 [ q* for all n, k ¥N;

(ii) qgn, k Q q
g
n uniformly on each bounded subset of E*×R;

(iii) qgn Q q* uniformly on each bounded subset of E*×R.

Hence {qgn, n} is a monotone nondecreasing sequence and converges to q*
uniformly on each bounded subset of E*×R.

For each n \ 1, let hn(x*)=inf{r: (x*, r) ¥ D
g
n, n}, where Dg

n, n denotes the
polar of Dn, n. Then hn are w*-lower semicontinuous real-valued convex and
with epi hn=D

g
n, n for all sufficiently large n \ 1. We claim the sequence

{hn} has the desired properties. Again by Lemma 2.2, the hn are generically
Fréchet differentiable for all sufficiently large n \ 1 since qgn, n are generated
by epi hn and are generically Fréchet differentiable. Appling Lemma 4.5 we
see hn q f uniformly on each bounded subset of E*. Finally, by Lemma
4.4, hn are Lipschitzian since hn [ gn and gn are Lipschitzian on E*. Hence,
the proof is finished.

Corollary 4.7. Every w*-lower semicontinuous real-valued convex
function can be approximated uniformly on every bounded set of the dual E*
of a separable space E by a w*-lower semicontinuous Lipschitzian generically
Fréchet differentiable convex function sequence.

5. FINAL REMARKS

Combining Proposition 2.7 with Theorem 4.6 we immediately have

Theorem 5.1. Suppose that a Banach space E admits an equivalent
locally uniformly convex norm, in particular, E is separable. Then for every
extended-real-valued w*-lower semicontinuous proper convex function f there
exists a sequence {fn} of convex functions such that for all n \ 1
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(i) fn [ fn+1 [ f;
(ii) fn are w*-lower semicontinuous and Lipschitzian on E*;

(iii) fn are generically Fréchet differentiable in E*;
(iv) limnQ. fn(x*)=f(x*) for all x* ¥ E*.

Remark 5.2. We know a locally uniformly convexifiable Banach space
(i.e., a space admitting an equivalent locally uniformly convex norm), in
particular, a separable space, would fail to have the Radon–Nikodým
property. But combining Collier’s theorem [5] with the main results of this
paper we see that a locally uniformly convexifiable space is very close to
the RNP. And yet, we could not substitute ‘‘generic Fréchet differentia-
bility’’ for ‘‘generic Fréchet differentiability approximating.’’

Remark 5.3. Without additional assumptions, we could not substitute
‘‘everywhere Fréchet differentiable’’ for ‘‘generically Fréchet differen-
tiable,’’ since E* admits an equivalent everywhere Fréchet differentiable off
the origin and w*-lower semicontinuous norm (i.e., a dual norm) if and
only if E is reflexive. By the same methods presented in this paper we can
show that ‘‘generic Fréchet differentiability’’ can be replaced by ‘‘every-
where (off the origin) Fréchet differentiability’’ in this paper if and only if
E is reflexive.

Remark 5.4. Comparing with Mazur’s (1933) theorem [14] ‘‘every
continuous convex function on a separable Banach space is Gateaux dif-
ferentiable at each point of a dense Gd subset (i.e., generically Gateaux dif-
ferentiable),’’ the version of this paper ‘‘every w*-lower semicontinuous
(real-valued) convex function on the dual of a separable space can be
approximated by a generically Fréchet differentiable convex function
sequence’’ is somewhat like a dual version of Mazur’s theorem.
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